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Chapter 1: Introduction 

Imagine a group of people living in the same city, in close proximity to 

one another.  Each of these people is connected to the others through a network of 

friends, family, and acquaintances.  Some of these relationships people rely on 

very little; others they could not live without.  Over time, old relationships wither 

and new ones form to fill the void. 

This dynamic network of relationships represents a hidden economy, not 

of money and objects but of smiles and promises, of encouragements and 

invitations, of admonishments and refusals.  Here a flower is exchanged for a kiss, 

there silence pays back a forgotten anniversary.  A police officer is awarded a 

badge for completing her training, and a mother makes lunch for a child without 

expectation of reciprocation. These everyday exchanges of approval, disapproval, 

confidence, security and so on are the stuff of life, and the participants are as 

dependent on these exchanges for their happiness as they are dependent on food 

and water for their survival. 

In this thesis we present a model of an economy like the one described 

above.  Our model is based on a theory of human needs originally developed by 

Abraham Maslow and extended by Michael Benedikt in Value: Economics, 

Psychology, Life [1999].  Benedikt proposes a set of needs common to all human 

beings, and introduces the idea of a psychological economy in which individuals 

exchange tokens that satisfy these needs.  The central argument of the book is that 

increasing complexity-and-organization – a pattern that characterizes all 
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evolutionary processes – also characterizes human life and everything we deem to 

have value.  The intent of this thesis is to provide evidence that increasing 

complexity-and-organization leads to greater need-fulfillment and therefore 

greater happiness among individuals in a society. 

In Chapter Two we describe two models of value proposed by Benedikt 

[1999].  The first model defines value in evolutionary terms.  The mathematical 

concept of complexity-and-organization is introduced, and positive value is 

associated with its increase.  The second model defines value in terms of a 

Maslovian understanding of human needs and their satisfaction through trade.  

The theory of a psychological economy is presented. 

Chapter III introduces TokenTrade, an agent-based computer simulation 

of a psychological economy.  The underlying model is described in detail, and the 

computer program is presented from a user’s point of view.  Technical notes are 

provided for those interested in modifying the system. 

In Chapter IV we present the results of three experiments conducted with 

TokenTrade.  The data from these experiments is explained through graphs and 

screen shots of various simulation runs.   

Chapter V contains conclusions drawn from these experiments.  Three 

hypotheses are presented as potential subjects for future work. 
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BACKGROUND AND PREVIOUS WORK 

Cellular Automata and Complexity 

In general, the present thesis is an attempt to study how patterns of 

increasing complexity-and-organization arise from simple interactions between 

autonomous agents.  The question of how complex behavior arises from the 

interaction of simple components is the major focus of cellular automata research 

[Wolfram 1986].  Cellular automata (CA) share many characteristics with 

TokenTrade, and it is likely that phenomena encountered in CA research may turn 

up in TokenTrade as well. 

Cellular automata (CA) are a class of mathematical systems characterized 

by discreteness (in space, time, and state values), determinism, and local 

interaction.  Finite state cells are ordered in an n-dimensional lattice, and these 

cells are updated synchronously according to a deterministic local transition 

function f.  Each cell obeys the same transition function, and the value of each cell 

is restricted to a set of integers Zk = {0,1,..., k −1}.  A cell's value at any time step 

is determined by a function of the values of the neighboring cells at the previous 

time step. The general form of a two-dimensional cellular automaton is given by 

 

xi , j
t +1 = f (x i− r, j − r

t ,. .. ,x i, j − r
t ,. .., x i+ r, j − r

t , xi −r , j
t , ... , xi, j

t ,. .. ,x i+ r, j
t ,x i −r, j +r

t , ... , xi, j +r
t , ... , xi +r , j +r

t )

 

f : Zk
2r+1 → Zk , 
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where 
t

jix ,  denotes the value of cell (i, j) at time t , f represents the transition 

function, and r  is a non-negative integer specifying the radius of the rule. 

A two-dimensional cellular automata is often graphically displayed as a 

grid, with each cell in the grid having a certain color indicating its current state. 

For a simple, binary site-valued cellular automata, these colors might be white 

and black, indicating an “on” or “off” state. 

 

Figure 1.1: A two-dimensional, binary site-valued CA. 

In recent years, cellular automata have arisen in popularity as a means for 

studying the behavior of various systems consisting of a large number of simple, 

identical, and locally connected components.  Cellular automata have been used 

to model complex phenomena that arise in physical, chemical and biological 

systems [Canning and Droz 1990, Hartman and Tamayo 1990, Sieburg et al. 

1990].   

Much cellular automata research is focused on understanding the 

conditions under which non-random, non-periodic (or in our terms, complex-and-

organized) behavior arises.  Wolfram’s [1984] scheme for classifying cellular 
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automata on the basis of their dynamical behavior divides cellular automata into 

four classes: 

 

Class I CA evolve to a fixed, homogeneous state. 

Class II CA evolve to simple separated periodic structures. 

Class III CA yield chaotic aperiodic patterns. 

Class IV CA yield complex patterns of localized structures. 

 

The most interesting CA are those that exhibit class IV behavior, and 

much research has gone into identifying their unique qualities [Li et al.1990, 

McIntosh 1990].  Langton [1990] has discovered a metric that he calls the λ 

parameter, which correlates directly with the amount of disorder observed.  The λ 

parameter is simply the percentage of neighborhood states that do not lead to the 

quiescent state (“death”).  By varying the λ parameter, we progress from CA 

exhibiting the maximum possible order to CA exhibiting the maximum possible 

disorder.  The progression of behaviors as a function of λ is: 

 

fixed-point → periodic → “complex” → chaotic, 

 

or, in terms of the Wolfram classes 

 

I → II → IV → III. 
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At intermediate values of λ, a phase transition is observed between 

periodic to chaotic dynamics, and behavior in the vicinity of this transition seems 

“complex,” i.e. orderly and yet unpredictable. 

  

Agent-Based Modeling and Artificial Societies 

 

In this thesis we apply agent-based modeling techniques to study 

psychological exchange between individuals in a society.  Agent-based modeling 

is useful when the object of study is a complex system containing many 

autonomous, heterogeneous, interacting agents. Although agent-based modeling 

has its roots in the theory of self-reproducing automata [von Neumann 1966], 

only in the past decade has large-scale agent-based modeling become possible due 

to recent advances in computing. 

Although agent-based modeling has traditionally been applied to physical 

and biological systems, it is gaining popularity in the social sciences under the 

title of artificial societies [Epstein and Axtell 1996, Gilbert and Conte 1995].  

Recent use of agent-based models in the social sciences includes the work of 

Albin and Foley [1990], Arifovic [1994], Arifovic and Eaton [1995], Arthur 

[1991, 1994], Axelrod [1993, 1995], Carley [1991], Danielson [1992, 1996], 

Epstein and Axtell [1996], Gilbert and Doran [1994], Gilbert and Conte [1995], 

Holland and Miller [1991], Kollman, Miller, and Page [1992, 1994], Marimon, 

McGrattan, and Sargent [1990], Marks [1992], Nagel and Rassmussen [1994], 

Tesfatsion [1995], and Vriend [1995].  The term “artificial society” refers to an 
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agent-based model of a social system.  An artificial society is composed of three 

basic elements: agents, an environment or space, and rules.  Agents are the 

“people” of artificial societies, the environment is the medium in which they 

interact, and the rules govern their behavior [Epstein and Axtell 1996]. 

Epstein and Axtell have developed an artificial society called Sugarscape 

that shares many similarities with the TokenTrade model presented here.  

Sugarscape models a population of agents competing for food in an environment 

of scarce resources.  The name Sugarscape refers to the two-dimensional 

landscape of “sugar” on which agents interact.  This landscape is actually a 

cellular automata that models the growth of a generalized resource that agents 

require for energy.  Agents are endowed with vision (ability to see sugar and other 

agents) and a metabolism (rate at which sugar is consumed).  A movement rule 

governs their behavior.  The simplest movement rule says “find the nearest sugar 

that you can see, go there and eat the sugar.”  In later chapters Epstein and Axtell 

add sophistications to the model including sex, combat, infection and trade 

between agents. 

The most obvious difference between Sugarscape and the TokenTrade 

model that will be presented later is that of agent movement.  In our model, agents 

will have a fixed location from which they cannot move.  Because our focus will 

be solely on trade and not the migration dynamics of populations, we have chosen 

to isolate this variable in our model.  However, there are many similarities 

between the models.  Agent vision in Sugarscape corresponds roughly with 

neighborhood in our model, and our agents will possess a sort of metabolism 
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which we call production/consumption rate.  Trade in both models is based on the 

microeconomic principle that an exchange will only occur if at least one party is 

made better off by the exchange and neither party is made worse off.  However, 

the way that trading partners are selected will differ.  Neighbor selection in 

TokenTrade will be accomplished through a bidding process, while in 

Sugarscape, the neighbor that an agent trades with is determined solely by spatial 

proximity.  

In designing the TokenTrade simulation, we have tried to follow the 

methodology set forth by Sites [1995] for building an exploratory simulation of a 

complex system: 

 

Typical Steps in Building an Exploratory Simulation of a Complex System 

• Simplify the problem as much as possible while keeping what is 
essential. 

• Write program which (sic) simulates many components following 
simple rules with specified interactions and randomizing elements. 

• Run program many times with different random number seeds, 
collecting data and statistics from the different runs. 

• Attempt to understand how the simple rules gave rise to the observed 
behavior. 

• Perform parameter changes and “lesions” on the program to locate the 
sources of behavior and the effects of different parameters. 

• Simplify the simulation even further if possible, or add additional 
elements that were found to be necessary. 
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Our experience confirms the importance of simplifying the problem down 

to only the essential elements.  Every bit of complexity that is added to a 

simulation makes it that much more difficult to track down the source of observed 

behavior.  Complexity of the underlying model also leads to complexity of the 

implementation, meaning that errors and bugs in the code are more likely to 

occur, which may lead to incorrect conclusions if they go undetected.  However, 

simplifying a model is often easier said than done.  It is often difficult to know at 

the outset which elements are necessary to model a system and which elements 

are extraneous, so the model must be continually modified and simplified as what 

is important becomes clear through experimentation.  Axelrod [1997] echoes 

these concerns and argues that replicating the results of simulation models, though 

rarely done, is essential if simulation is to become a legitimate research 

methodology in the social sciences. 
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Chapter 2: Two Models of Value  

In this chapter we present two separate, but intimately related models that 

together form one cohesive theory of value, as originally developed by Benedikt 

[1999].  The first and fundamental model defines value in terms of an 

information-theoretic understanding of evolution.  Evolution is a process by 

which the complexity-and-organization of a system increases, on average and 

over the course of time.  Positive value is attributed to anything that leads a 

system in the direction of increasing complexity-and-organization.  In the first 

section of this chapter we define complexity-and-organization in precise 

mathematical terms, and show how value is associated with its change. 

The second model of value is an attempt to restate this first, fundamental 

model in terms of our own everyday, personal experience.  Here, what is deemed 

valuable is that which satisfies our human psychological needs, that which makes 

us happy.  In section two we introduce a Maslovian model of human needs and 

their satisfaction, and we describe a psychological economy based on the trade of 

tokens that fulfill these needs.  

In the third section we suggest how these two models of value might relate 

to one another.  As mentioned above, the information-theoretic understanding of 

value is considered fundamental.  As such, the psychological-economic model can 

be viewed as a restatement of this fundamental model in human-centric terms.  

The goal of this thesis is to look for evidence that the psychological-economic 

model of value is, in fact, a restatement of the information-theoretic model. 
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Note that in our presentation of these two models of value, we do not 

attempt to persuade the reader of their validity, as this argument is beyond the 

scope of this thesis.  The reader is referred to [Benedikt 1999] for philosophical 

arguments and empirical evidence that support the theory presented here. 
 

I.  THE EVOLUTIONARY MODEL 
  

Information is measured in the transition from ignorance to knowledge.  It 

is simply the difference, or change, in an observer’s uncertainty, U, about a given 

situation before receiving some information, and his uncertainty after receiving 

the new information.   

 

afterbefore UU −=I , 

where I means “amount of information gained.”  (2.1) 

 

We define uncertainty as follows:  

 

�
=

−=
N

i

ipipU
1

2 )(log)( , 

where i = 1,2,3,...N      (2.2) 

 

Each i represents one among N possible outcomes, and p(i) is the 

probability of outcome i.  Let us follow a simple example.   

Imagine a situation in which we know that there are two possible 

outcomes.  A coin flip is a good example.  Before the coin lands, we are uncertain 
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as to whether it will land heads up or tails up.  The probability of the coin landing 

either way is “50-50” or 0.5, assuming our coin is unbiased.   

 

1
)]1(5.0)1(5.0[

]5.0log5.05.0log5.0[

)](log)()(log)([

22

22

=
−+−−=

+−=

+−= tptphphpU before

 

 

After it lands, we are certain of the way it landed, and the probability of 

the coin landing heads (or tails) up (whichever is actually the case) is 100%, or 

1.0.   

 

0
]0)0(1[

]0log01log1[

)](log)()(log)([

22

22

=
+−=

+−=

+−= tptphphpU after

  

 

This gives us 

 

bit 101 =−=−= afterbefore UUI  

 

This transition from ignorance to knowledge, from “50-50” uncertainty to 

100% certainty, emits one bit of information into the world, and specifically, one 

bit of information into the observer’s mind. 
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We can easily extend this to situations with more than two possible 

outcomes.  An unbiased six-sided die roll, for instance, yields 2.585 bits of 

information: 

 

bits 585.2

]6/1log6/1...6/1log6/16/1log6/1[

)(log)(

222

6

1
2

=
++−=

−= �
=i

before ipipU

 

 

bits 585.2

0

=−=

=

afterbefore

after

UUI

U
 

 

This is, in fact, the maximum amount of information that we can receive 

about a six-possibility situation.  This is true because we go from complete 

uncertainty to complete certainty about how the die will land.  Uncertainty is 

greatest when all possibilities are equally likely to occur, as is the case with our 

unbiased die.  In this case,  

 

6log 2max == UU before . 

 

In general,  

 

NU 2max log=       (2.3) 
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If the die is biased in any way, and we know it, we receive less 

information from the die roll.  Imagine, for instance, that a friend tips us off that 

the die is fixed, and that the probabilities are as follows: 

 

p(“1”) = 0.1, p(“2”) = 0.4, p(“3”) = 0.1, p(“4”) = 0.1, p(“5”) = 0.2, p(“6”) = 0.1 

 

We have gained  

 

bits 585.2=beforeU  

 

bits 321.2
)]332.0()464.0()332.0()332.0()529.0()332.0[(

]1.0log1.02.0log2.01.0log1.0

1.0log1.04.0log4.01.0log1.0[

)(log)(

222

222

6

1
2

=
−+−+−+−+−+−−=

+++
++−=

−= �
=i

after ipipU

 

bits 264.0=−= afterbefore UUI  

 

of knowledge from our friend.  In all of the examples prior to this, Uafter was equal 

to zero (certainty).  This time, we are still left with some uncertainty, but we are 

less uncertain than we were before our friend tipped us off.  Now if we roll the 

die, we have 

 

bits 321.20321.2 =−=−= afterbefore UUI  
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The act of rolling our biased die yields only 2.321 bits of information, 

0.264 bits less than the unbiased die.  This is because some of the information 

about the outcome was already known to us, prior to the rolling of the die − 

precisely 0.264 bits.1 
 

Complexity 
 

We can now define complexity in information-theoretic terms.  

Complexity, unlike information, is an intrinsic property of things-in-the-world, 

like their color or mass.  The complexity of a thing does not depend on an 

observer, and is determined without regard to what we know or do not know 

about it.  However, there is an intimate connection between uncertainty – call it 

apparent complexity – and complexity.  The complexity of a system refers to the 

amount of uncertainty the system produces in us when we are best informed about 

it.  We formulate complexity in terms of uncertainty, U, as follows:   

Following Benedikt, 

 

,1,2,3,... re       whe),(log)(
1

NiipipUC
N

i

=−=≡ �
=

  (2.4) 

 

NUC 2maxmax log== ,      (2.5) 

 
                                                 
1 We should note that the measure of information presented here, I, is a slight modification of the 
one originally proposed by Shannon and Weaver [1949].  In their formulation of information, H, 
they assume that Uafter is zero. 
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Whereas complexity refers to the “amount of randomness” in a system, 

organization, R, is a measure of the degree to which the system is constrained, or 

non-random.  Just as information, I, represents a reduction in uncertainty, 

organization, R, represents a reduction in complexity. 

 

(2.5b)                                                           0C

(2.5a)                                                   or           ,0

observedpotential

actualmax

≥−=
≥−=

C

CCR
 

 

Cmax and Cactual are objective, intrinsic properties of a system, while 

Cpotential and Cobserved represent an observer’s subjective knowledge about the 

system (which may be mistaken).  While Cactual <= Cmax and Cobserved <= Cactual for 

all circumstances, the relationship between Cpotential and Cmax, and Cobserved and 

Cpotential depends upon the situation. When we have perfect knowledge of a 

system, Cpotential = Cmax and Cobserved = Cpotential.  However, this is rarely the case, as 

we are prone to over- or under-estimate the actual as well as the potential 

complexity of a system.  Since this state of imperfect knowledge is typical, we use 

the following hybridization of equations 2.5a and 2.5b to define organization2, R: 

 

R = Cpotential – Cactual      (2.6c) 

 

                                                 
2 For the purpose of explanation, this definition will do.  The actual formulation is a tad messier: R 
= (Cpot

2 – Cact
2)0.5 
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Let us return to our previous example of a six-sided die.  Now we are 

concerned with the complexity of the die (or more precisely, the complexity of the 

sequence of numbers that the die produces).  We can easily compute Cpotential: 

 

bits 585.26log2maxpotential === UC  

 

If the die is unbiased, then Cactual is equal to Cpotential, since all possibilities 

are equally likely.  In this case, we have: 

 

R = Cpotential – Cactual = 2.585 – 2.585 = 0 bits 

 

This follows our intuition – an unbiased die is not organized in any way 

with regard to the sequence of numbers it produces.  If we roll a six-sided die a 

thousand times, we should expect that each number will come up an equal number 

of times (between 166 and 167, to be exact).  This is what we mean when we say 

that the die is random, or unbiased. 

Now let us imagine that the die is biased, as we did earlier. Cpotential does 

not change, but Cactual is smaller than it was for the unbiased die. 

 

bits 585.26log2maxpotential === UC  
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bits 321.2
)]332.0()464.0()332.0()332.0()529.0()332.0[(

]1.0log1.02.0log2.01.0log1.0

1.0log1.04.0log4.01.0log1.0[

)(log)(

222

222
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1
2actual

=
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++
+++−=

−= �
=i

ipipC

 

R = Cpotential – Cactual = 0.264 bits 

 

We recognize these numbers from the earlier example, when we learned 

that our die was biased.  From this we can see how the complexity of the die 

relates to our uncertainty about it. Cpotential is simply Umax from before, the 

maximum uncertainty we can have about the die. Cactual is equal to our 

uncertainty, Uafter, after we learned that the die was biased. R is the information 

“contained” in the die, the information that we gained when we learned that the 

die was biased. 

So far, we have been assuming that we have perfect knowledge of the die, 

but what about the case when our knowledge is incorrect, or at least, incomplete?  

Consider the following experiment. Paula is asked to listen as various numbers, 

between one and six, are read aloud from a list.  She is instructed to listen 

carefully, and try to determine the pattern.  After a certain period of time, she will 

be asked to show what she has learned by predicting what the next number will 

be.   
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Later, another woman, Kristen, is given the same instructions, but is told 

instead that the numbers in the list are between one and twelve.  The list, 

however, is the same as before – it only contains numbers between one and six. 

Unbeknownst to the subjects, the experimenter has generated the list by 

rolling a unbiased six-sided die, resulting in a list of numbers in random order. 

The actual complexity of the sequence, then, is bits 58.26log 2actual ==C  for both 

of them. 

After trying in vain to find a pattern in the sequence, Paula throws up her 

hands and reports that there is no order to the numbers.  For Paula,  

 

bits 58.26log 2maxactualpotential ==== CCC , and 

 

 R = Cpotential – Cactual = 0 bits. 

 

Since Kristen has incorrect knowledge about the list, Cpotential is not equal 

to Cmax.  She has overestimated Cmax.  After a period of time, Kristen comes to the 

conclusion that there are only six numbers (one through six), arranged in random 

order.  In her case,  

 

Cpotential = log 2 12 = 3.59 bits, 

Cactual = log 2 6 = 2.58 bits 

 

R = Cpotential – Cactual = 1.01 bits. 
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Since Paula has perfect knowledge of Cpotential, hers is the accurate measure 

of R. After finishing the experiment, one might argue that Kristen knows that 

Cpotential = Cactual  = 2.58 bits, and R = 0 bits, since she is now aware that the 

numbers seven through twelve never appear in the sequence. However, regardless 

of whether she revises her belief about Cpotential, her uncertainty about the 

sequence has decreased.  Paula, on the other hand, is still as uncertain as she was 

when the experiment began.  In fact, we might say that Kristen comes out ahead 

psychologically, for she has the pleasure of gaining some information about the 

sequence.  For her, I = Ubefore – Uafter = 3.59 – 2.58 = 1.01 bits, while for Paula,  

I = 2 –2 = 0 bits. 

 

The Complexity of Fields 

 

Our discussion of information and complexity thus far has focused on 

temporal sequences, linear successions of events in time.  “Heads, heads, tails, 

heads,...” “5, 1, 4, 2, 3, 6, 3,...” “Red, blue, yellow, green, blue, blue,...” and the 

like.  In many situations, however, we will want to determine the complexity of a 

system that is extended in space, rather than (or in addition to) time.  To address 

this issue we turn to a discussion of the complexity of fields (or more precisely, 

the complexity of the behavior of temporally extended fields). 
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A field is a collection of symbols, states, etc. that is extended in space.  

Let us take the simplest case.  Imagine a field containing four elements, arranged 

in a grid: 

 

Figure 2.1: A field of four cells 
 

Each element can be in one of two states, “white” or “gray.”  Each cell, 

then, has potential complexity Cpot (cell) = log 2 (2)  = 1 bit.  Each cell carries at 

most one bit of information.  To find the maximum complexity of the field, we 

simply multiply by the number of cells, so that 

  

Cpot = 4 x log 2 (2) = 4 x 1 = 4 bits 

 

In general, the potential complexity of a field is given by 

 

ML

M

NC
L

2

2

2pot

log

log

(2.7)                                                                          log

=
=

=

 

 

where N is the number of possible field states, L is the number of elements, and M 

is the number of element states.   

If our field was composed of elements capable of four states,  
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Cpot = 4log 2 4 = 8 bits.  If we extended this field to a third dimension, so that 

there were eight cells, we would have Cpot = 8log 2 4 = 16 bits. 

In order to compute Cact, we must have some idea about what states the 

individual elements in the field are likely to occupy in the next moment, just as 

we did with the coin, the die, and the screen.  As we saw with these examples, if 

all states are equally probable, then Cact = Cpot.  However, some states are more 

probable than others, Cact < Cpot, and we see organization in the behavior of the 

field. 
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Figure 2.2: A typical game of tic-tac-toe (from Benedikt, 1999). 

To illustrate this, let us imagine a game of tic-tac-toe.  A tic-tac-toe board 

can be viewed as a two-dimensional field with nine elements, each having three 

possible states, “X,” “O,” and “empty.”  For such a field, Cpot = 9log 2 3 = 72 bits.  

However, in tic-tac-toe, Cpot is much smaller than this from the beginning, 

reflecting the organization imposed by the rules of the game.  Let’s say that player 
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X starts the game.  From X’s point of view, there are only nine possible states of 

the field, corresponding to the nine possible moves available to X.  Thus, for the 

first turn, Cpot = log N = log 2 9 = 3.2 bits. Taking this number as Cact, we might 

say that the rules of the game bring R = Cpot – Cact = 72 – 3.2 = 68.8 bits of 

organization to the field. 

At the start of the game, then, Cpot for player X is 3.2 bits.  Now we 

compute Cact by determining the probability of each move, or field state. Cact 

represents the player’s uncertainty about which cell in the field to mark next (i.e., 

which field state to choose).  This of course depends on the knowledge that player 

X has about the game.  In Figure 2.2 we follow a typical game of tic-tac-toe, 

estimating probabilities along the way.  The conjectured probabilities represent 

two evenly matched players (elementary-age children, perhaps) with some 

experience playing the game, but not so much experience that the outcome of the 

game (a draw) is predetermined. 

With each successive move, Cpot decreases as the number of possible 

moves, N, decreases by one.  Cact also decreases as the possible moves become 

increasingly constrained by each player’s situation. 
 

Complexity-and-organization 
 

Complexity-and-organization, denoted by the Greek letter Ω (“omega”), 

combines the two quantities, complexity, C,  and organization, R, that we have 

previously introduced.  
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In our discussion of Ω, we use a slightly more elaborate measure of R: 
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Our previous formulation of R is only slightly altered here, and this new 

function remains fundamentally similar to the equation for information, I.  In our 

final formulation of Ω, we drop the subscript, and refer to Cact simply as C.  

Henceforth, “complexity” by itself shall refer to actual complexity, unless 

otherwise specified. 
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We can visualize the relationship of C, R and Ω by plotting complexity, C, 

against organization, R.  
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Figure 2.3: Graph of complexity, organization, and complexity-and-organization 
(from Benedikt, 1999). 

The hyperbolic curves in the graph represent contours of equal Ω, such 

that anywhere along one of these contours, Ω remains the same.  A system may 

be characterized depending on where it lies on this graph.  On the left side of the 

graph, we have simple systems, on the right, complex ones.  At the bottom of the 

graph reside disorganized (or “dis-ordered”) systems, at the top, highly organized 

(or “ordered”) ones.  We can roughly describe a system as being situated at, or 

lying between, four extreme states: simple-and-organized, complex-and-

organized, simple-and-disorganized, or complex-and-disorganized.  Notice that 

systems with high Ω  reside in or near the complex-and-organized extreme. 

Potential complexity, Cpot, is not represented explicitly on this graph.  

However, it is easy to find Cpot at any point.  Solving Equation 2.9, we get 
222

pot CRC += , and 5.022
pot )( CRC += .  Thus, Cpot is the hypotenuse of a right 
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triangle with sides of length R and C, according to the Pythagorean theorem.  In 

Figure 2.4 we see that at any point on the graph, Cpot is simply the distance of the 

point from the origin. 

 

Figure 2.4: Finding potential complexity, Cpot (from Benedikt, 1999). 

Figure 2.4 shows a radius sweeping out a curve along which Cpot does not 

change.  Notice that as we move left on the curve, complexity, C, gets smaller 

while organization, R, grows.  Moving to the right, R gets smaller while C grows.  

Also, we see that Ω is greatest for a given value of Cpot when R and C are equal. 

This suggests a partitioning of Figure 2.3 into three regions, as shown in 

Figure 2.5.  In the middle region, labeled “life,” R ≈ C, and C/ Cpot ≈ 1/√2.  For a 

given Cpot, Ω will be greatest in this region.  In the region labeled “rigidity,” R > 

C, and C/ Cpot < 1/√2.  Here, C/ Cpot approaches zero as C decreases.  In the 

region labeled “chaos,” R < C, and C/ Cpot > 1/√2.  Here, C/ Cpot approaches one 

as C increases.  
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Figure 2.5: Three regions of the complexity-organization graph (from Benedikt, 
1999). 

Figure 2.6a combines the previous three figures into one graph.  In 

addition to contours of equal complexity-and-organization, Ω, shown in Figure 

2.3, we now see contours of equal potential complexity, Cpot , curving in the 

opposite direction.  Furthermore, we have labeled the two regions “rigidity” and 

“chaos” as we did in Figure 2.5.  A point along the Cpot contour Cpot = 7.0 is 

shown on the graph, at the midpoint of the contour where Ω is greatest.  At this 

point, C = R = Ω = 4.95.  In general,  

 

Ω = Ωmax when Ω = C = R = Cpot /√2   (2.11) 

 

Figure 2.6b shows the same contour, but this time Ω is shown on the Y-

axis. From this we see that C does indeed have the same value as Ωmax. 

In Figure 2.6c, C still occupies the X-axis, as in the previous graphs, but 

this time Cpot is shown along the Y-axis.  A 45 degree line runs down the diagonal 

to the axis, along which C = Cpot.  Between this line and the Y-axis are shown 

contours of equal Ω.   
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Figure 2.6a, b,and c: Three graphs of the relationship of Ω to C, Cpot, and R. 
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Evolution and ΩΩΩΩ 

 

Evolution, broadly defined, can be viewed as a process by which the Ω of 

a system increases, on average, over the course of time.  The amount of 

complexity-and-organization, Ω, serves as a measure of the “evolvedness” or 

“lifefulness” of a system.  Benedikt [1999] provides evidence from a number of 

empirical studies that support this use of the Ω-metric. 

Perhaps the most persuasive of these is an analysis of gene sequences from 

various species showing the Ω-optimality of DNA at the scale of codons.  DNA is 

made up of long sequences of nucleotides, adenine (A), guanine (G), cytosine (C) 

and thymine (T), grouped into triplets called codons.  Each nucleotide triplet 

specifies an amino acid.  The maximum number of different amino acids that 

DNA could specify with one codon is 43 = 64, but in nature we find only 20.  

However, all 64 possible nucleotide combinations are found in DNA.  Instead of 

omitting the unnecessary 44 combinations, three of these “extra” codons are used 

to encode a “stop” instruction, and the rest are redundant codes for the 20 amino 

acids, providing protection against error and noise.  In this analysis,  

Cpot = log 2 43 = 3log 2 4 = 6 bits, and actual complexity, C, is determined by the 

frequency distribution of the 64 codons gathered from the “codon usage tables” 

for various species. 

The results of this analysis reveal that all species lie along the contour of 

Ω = 4.242 bits, which is equal to Ωmax = Cpot /√2 = 4.242 bits.  Thus, at the scale 

of codons,  DNA is Ω-optimal. 
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Another example that is particularly relevant to the thesis presented here 

involves an analysis of a simple cellular automaton (CA) called LIFE [Gardner 

1970, 1983].  Developed in 1974 by John Conway, LIFE is a 2-dimensional CA 

containing N binary state cells.  The state of a cell at time step t + 1 is determined 

by the states of its eight adjacent neighbors, according to the following rules:  

 

if exactly two neighboring cells are “on,” stay in the current state. 

if exactly three neighboring cells are “on,” turn (or stay) “on.”  

in all other cases, turn (or stay) “off.” 

 

A starting configuration of “on” and “off” cells is specified, and the CA is 

allowed to run, updating with each time step t.  Many initial configurations 

devolve quickly into an all-off state, or into an uninteresting periodic state.  Some 

configurations, however, produce complex patterns that persist, travel, and 

evolve, and in some cases even reproduce, exhibiting some behaviors typically 

reserved to living organisms. 

Configurations that exhibit the most interesting behavior have an “on” to 

“off” ratio of 1:5.  Thus, for any cell, the probability that it is “on” is 0.2, and the 

probability that it is “off” is 0.8.  This gives 

 



 32 

Cpot = 1 
[ ]

bits 705.00.69)(0.72

bits 69.0)72.0(1

bits 72.0

8.0log8.02.0log2.0

)(log)()(log)(

1/2

2/122

22

22

=×=

=−=

=
−−=

+−=

Ω
R

offpoffpoffponpC

 

 

This result is very close to optimal, Ωmax = Cpot /√2 = 0.707 bits. 

Near-optimal complexity-and-organization also turns up in the artificial 

society simulation Sugarscape, by Robert Axtell and Joshua Epstein.  The most 

basic version of Sugarscape consists of a grid of cells, each of which may contain 

either an agent or some amount of “sugar” 0, 1, 2, 3, or 4.  Agents require sugar to 

live, and they move around on the grid, or sugarscape in search of food.  Their 

movement is based on what they are able to see in their neighborhood.  

Movement proceeds in rounds – with each round each agent in the population 

moves to the best source of sugar it sees. 

Four qualities determine an agent’s state: “vision,” the number of 

neighboring cells seen 4, 8, 12, 16, 20, or 24; “metabolism,” the units of sugar 

consumed each round 1, 2, 3, 4; “wealth,” the amount of unconsumed sugar 0, 1, 

2, … , 160; and location (x,y) on the sugarscape.  Vision and metabolism are 

fixed, while wealth and location vary.   

In Benedikt’s preliminary analysis, Ω is optimal when vision = 8.  An 

agent that is surrounded by sugar cells has 5x possible neighborhood states to 

consider, where x is neighborhood size, or vision.  Taking into account vision, 

metabolism, and wealth, the agent itself has only 6x4x161 = 3864 potential states 
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(Benedikt refers to these as “internal” states since they are not visible to an 

observer of the simulation).  This gives  

 

Cpot  = log 2 58 = 18.58 

C = log 2 3864 = 11.92 

Ω = 13.03 ≈ Ωmax  = Cpot /√2 = 13.14 

 

However, it is easy to find flaws with this analysis.  Benedikt concedes 

that the analysis is incomplete, as it ignores the initial distribution of sugar, which 

is organized into two separate “hills” located in the northeast and southwest 

regions of the sugarscape, as well as the initial number of agents, which is 400 on 

a 2500 cell grid – a ratio close to the 1:5 ratio of “on”/”off” cells in LIFE.  

Furthermore, situations in which other agents are inside the agent’s neighborhood 

are not taken into account. 

As there are many different ways in which we might measure Ω in 

Sugarscape, it is important to be very specific about what it is that we are actually 

measuring.  To state it precisely, what Benedikt has measured in the above 

analysis is the complexity-and-organization that results from the conversion (or 

compression) of neighboring sugar-cell state information into an agent state.  

Stating it in this manner reveals another problem with Benedikt’s method: vision 

and metabolism are not variable, and thus are not part of the conversion of 

neighboring cell state information into the agent’s state.  Neighboring sugar-cell 

state information can be converted into wealth and position (which is absent in the 
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above analysis) only, since these are the elements of an agent’s state that are 

variable.  This gives 161 x 2500 potential states, so that Cact = log 2 402500.  

However, an agent never actually has the choice of 2500 (x,y) locations, since its 

position is constrained by its vision.  Perhaps here we should draw a distinction 

between scales, as in the cellular automata example.   

This analysis illustrates some of the difficulties one encounters when 

attempting to measure Ω in any system.  Even with a relatively simple, well-

understood system such as Sugarscape, measuring Ω becomes quite complicated.  

The more complicated the system, the more difficult it becomes to accurately 

assess Ω, as we shall see later when we attempt to measure Ω in our own 

TokenTrade simulation. Any measurement of Ω is always a partial view, and it is 

often difficult to determine the best place to insert the “probe” in order to capture 

the relevant potential and actual complexity.  It is also important to distinguish 

between Ω that has been “designed-in” versus Ω that emerges from the 

simulation, by separating distinct scales of organization.   

 

Value 

 

Now that we have a way − at least in principle − to measure the 

“lifefulness” of a system, the definition of value is straightforward.  Positive value 

is attributed to anything that increases the “lifefulness,” or complexity-and-

organization of a system. Value to a system is defined as a change in its 

complexity and organization: 



 35 

  

V = Ωafter – Ωbefore = ∆Ω  

 

Any change in Ω, then, has value (positive or negative) to the system.  

Positive value is attributed to anything that “pushes” the evolution of a system in 

a positive direction, toward greater Ω.  A system’s location on the Ω graph 

determines which direction the system should move to increase Ω.  Anything that 

moves the system in this direction has positive value.  For instance, one system 

may need to increase C in order to increase Ω, while another system with the 

same Cpot  may need to increase R by decreasing C in order to increase Ω.  

Imagine two such systems, A and B: 

 

Cpot  = 3 

CA = 1.98 

CB = 2.44 

Ωmax  = C = 3/√2 = 2.12 

 

Thus, CA < Ωmax  < CB.  In order to maximize Ω, system A must decrease 

C, while system B must decrease C. 

Thus, what is valuable to one system might be of little or even negative 

value to another.  In other words, the worth of things is relative.  Also, note that 

any measurement of value requires a subject; value is always “value-to” a 

particular system that experiences a change in Ω.  Furthermore, this subject may 



 36 

be a self-conscious, intentional being, doing everything in its power to increase Ω, 

just as it may be an inanimate system, such as a field of particles or an economy.  

The contention of this theory is that the very difference between animate and 

inanimate systems is their respective complexity-and-organization, and that the 

long-term survival of any of these systems depends on increasing Ω.   

 

II. THE PSYCHOLOGICAL-ECONOMIC MODEL 

 

Benedikt’s information-theoretic model of value provides an objective 

way to measure, for any system, the value of any change to that system.  In this 

sense it is thought to be fundamental.  However, it is unclear how this manifests 

itself in the daily affairs of human beings, where such assessments of value guide 

every choice that we make.  We certainly do not believe ourselves to be making 

mathematical judgements about the complexity-and-organization of our lives 

when we choose to eat breakfast, play basketball, study pharmacology, or spend 

time with our family and friends.  The psychological-economic model thus 

attempts to provide a model of value from a human point of view.  Whereas the 

information-theoretic model of value provides a measure of value to any system, 

the psychological-economic (or psychoeconomic) model of value is concerned 

specifically with value to human beings. 

In an extension of Abraham Maslow’s original theory of personality, 

Benedikt proposes that all human beings have a similar set of psychological 

needs, and that happiness comes from the fulfillment of these needs.  Needs arise 
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in rough succession, so that higher needs appear only when our more basic needs 

are met.  In this model, value (in the positive sense) inheres in those things that 

satisfy our needs.  Benedikt extends Maslow’s model to include the idea of a 

psychological economy, in which need-fulfilling tokens are exchanged between 

individuals and groups.  In this economy, tokens have value relative to the needs 

of individuals, and individual happiness comes from the acquisition of needed 

tokens.  Benedikt argues that this struggle to acquire tokens is the root of social 

evolution, the result of which is the increase in complexity and organization of 

human minds and human society. 

 

The Stratigraphy of Needs 

 

The stratigraphy of needs is based on Abraham Maslow’s similarly titled 

hierarchy of basic needs, introduced in his book Motivation and Personality, 

which first appeared in 1954 [Maslow 1970].  Maslow, a psychologist, developed 

this theory of personality as an alternative to the Freudian and behaviorist theories 

that were popular in his time.  Benedikt has revised this model to include six 

needs, one more than Maslow’s original five, common to all human beings3: 

                                                 
3 The claim that this applies to all human beings becomes more contentious at the higher strata in 
the stratigraphy.  As we move upward, the needs are less directly biological and more socially 
rooted.  As a result, there is probably more variation among cultures in the order in which these 
needs arise, or at least the order in which they are fulfilled.  Benedikt notes that he is following a 
Western and modern structure. 
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Freedom 

Confidence 

Approval 

Legitimacy 

Security 

Survival 

 

Figure 2.7: The Stratigraphy of Needs 

An individual’s satisfaction depends on the degree to which these needs 

are met.  A perfectly satisfied person is one for whom all needs, from Survival to 

Freedom, are sufficiently fulfilled.  Happiness is a feeling of progress that results 

as we become increasingly satisfied.  In other words, happiness is the rate of 

change in satisfaction that we experience.  We are most happy when satisfaction 

is increasing at a rapid pace.  Likewise, unhappiness results from a rapid decrease 

in satisfaction. 

Needs arise roughly in order from lowest to highest, beginning with the 

need for survival and approaching the need for freedom.  The need for legitimacy, 

for example, asserts itself only when the need for security and survival are 

satisfied.  The higher needs are considered to be more “evolved,” and therefore 

more complex-and-organized, since they require a foundation of more basic needs 

for support.  This is a point to which we will return later. 

This picture of the needs as a strict hierarchy is too rigid, however.  Lower 

needs are not abandoned with time, as this picture suggests, they simply become 

T
im

e 
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less urgent.  Higher needs often co-exist with lower needs.  Acknowledging this, 

Benedikt refers to his model as a “stratigraphy” rather than a “hierarchy” to 

suggest a layering of needs that is more flexible and organic.  In this model, needs 

exist at overlapping strata rather than at separate levels.  Adapted from Maslow, 

Figure 2.8 is offered as a more realistic picture of how needs arise and decline 

over time. 

 

Figure 2.8: A picture of how the needs identified by Maslow succeed each other 
(adapted from Maslow). 

This model imagines needs arising in strict order, from left to right.  

However, Benedikt argues that although this is a good picture of how existing 

needs succeed each other in strength, it does not account well for the emergence 

of new needs, which usually occurs during childhood.  Thus, complementing the 

previous model of how needs succeed each other in strength is Figure 2.9, which 

shows how needs might emerge over time.  In this model, needs emerge in the 

space between survival and freedom, becoming increasingly narrow and well 

defined and greater in number over time.  In other words, the needs become 
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increasingly specialized as the space between survival and freedom expands.  This 

diversification of needs is thought to correspond with an increase in mental and 

behavioral complexity-and-organization of the individual.  

 

 

Figure 2.9: A model of how the needs might emerge over time (from Benedikt, 
1999). 

The expansion of needs is thought to occur through the introduction of 

proxies and prerequisites for already existing needs’ satisfaction.  Proxies 

decrease complexity, while prerequisites increase it.  Proxies are substitutions for 

the satisfaction of (usually lower) needs, so that a proxy, like cash to gold, or gold 

to rice, acts as a stand-in for actual need fulfillment.  Like cash, proxies serve as 

conveniences that increase the efficiency of trade, and their worth is likewise 

dependent on a collective agreement.  Conversely, prerequisites delay trade by 

acting as new hurdles standing in the way of a higher need’s satisfaction.  Over 

time, proxies and prerequisites become established needs in and of themselves, 
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thereby increasing the overall complexity-and-organization of the entire need 

structure. 

 

The Psychological Economy 

 

The model of individual needs that we have described thus far is only half 

of the picture.  Benedikt proposes that needs are fulfilled by psychological goods 

called tokens, and that these goods are continually exchanged between people and 

groups in a psychological economy. Tokens fulfill specific psychological needs, 

and an individual’s token preferences depend on his location on the stratigraphy 

of needs.  This economy of tokens is thought to underlie the economy of material 

goods and services as traditionally understood. 

 

Tokens 

 

A (positive) token, in specific terms, is “a packet of information devised 

and offered by one party to another with the intention, on the part of the former, to 

provide or guarantee a measure of satisfaction of one or more of the latter’s 

psychological needs, and generally in the expectation of reciprocation [Benedikt 

1999, ch. 3].” Tokens appear at all levels on the stratigraphy.  Figure 2.10 is a list 

of examples of various types of tokens, classified by the need that they fulfill: 
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Freedom tokens include invitations to, submissions of, admissions to; 
offers, consents, options, grants, access, tickets, releases, exemptions, 
immunities, waivers, absolutions, permissions, privileges; uncommitted 
time, unbudgeted money... 

Confidence tokens include promises, secrets, entrustings, “inside 
information,” investments, loans, certifications, commissions, “cachet,” 
confirmations, sponsorships, scholarships, recommendations, 
encouragements, missions, votes, futures, stocks and bonds, checks... 

Approval tokens include applause, smiles, compliments, kudos, votes, 
congratulations, grades, gifts, thanks, favors, blessings; expressions of 
pride, endorsements; dedications, autographs, kisses, declarations of love, 
honoraria... 

Legitimacy tokens include names and namings (“en-title-ments”), legal 
identity (“papers”), charters, licenses, contracts, treaties, titles, prizes, 
medals, and awards, “station,” “office,” rank; stamps and seals, signatures, 
memberships and affiliations; (property) deeds, claims, obligations, 
justifications, rights, duties and responsibilities, proofs of provenance or 
lineage, salutes and other gestures of respect... 

Security tokens include decrees, guarantees, sanctions, insurances, 
assurances, assessments of trustworthiness; “contacts,” guardianships, 
shelters, protection, patronage; seals and locks; tattoos, curses and 
caresses; alliances and allegiances; land, “inalienable” rights, 
responsibilities, and entitlements; predictability and regularity as such... 

Survival tokens include life riskings, savings and sacrifices, life-critical 
knowledge; fasts, forfeitures, boycotts, oaths; scars; weapons; suicides and 
suicide threats, hostage takings, showing/getting “respect”...all 
demonstrative acts of violence, physical suffering/well-being, or 
nurturance; signals of sexual availability, indications of stocks of food, 
clothing, fuel, medicine, etc. 

 

Figure 2.10: Examples of tokens [Benedikt 1999]. 

It is important to note that while objects may be the only physical 

evidence of a token exchange, tokens are psychological information, not physical 
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objects.  An apple presented to a teacher, for instance, represents a token of 

approval.  However, it is not the apple itself that is the token, but rather the 

psychological information that transfers between student and teacher in the 

process of exchanging the apple.  Because it is the psychological good that is 

relevant, the same object may be involved in very different token exchanges.  The 

same apple given to a hungry child, for instance, once a token of approval, now 

becomes a token of survival.  As the apple example illustrates, the context in 

which a token is offered determines its effect. A gift from a member of the mob, 

to give another example, is really an obligation.  Thus, the same token may 

appear at different strata in the stratigraphy of needs in different situations.   

Unlike material goods, tokens are immediately and completely consumed. 

Their effect of satisfying a need typically decays with time, after which the need 

must be addressed again.  The rate at which this decay occurs varies with different 

types of tokens.  A pat on the back is fleeting; a college diploma lasts for a 

lifetime.   

Tokens can be positive or negative.  Most of the examples in Figure 2.11 

are put in positive terms, however, many of these examples have negative 

counterparts.  A frown, for instance, is a negative approval token – the opposite of 

a smile.  Furthermore, some tokens operate at more than one stratum 

simultaneously.  A marriage license is one such “token bundle,” as it transfers 

positive tokens of legitimacy and approval along with negative freedom tokens (in 

modern, liberal societies).  
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Finally we note that tokens do not always come from other people, as we 

often exchange tokens with ourselves.  We reward ourselves with approval when 

we accomplish our goals, and punish ourselves with guilt when we behave badly.  

Of course, this internal trading is likely an internalization of external societal and 

familial social pressures.  Furthermore, tokens may come from other animate and 

inanimate things in the world, such as a pet or a work of art.  We surround 

ourselves with animals, plants and objects that provide us with constant sources of 

positive tokens. 

 

Satisfaction and Happiness 

 

Whether we are satisfied depends on our ability to acquire tokens that 

fulfill our needs, either from others or from ourselves.  Each individual in the 

psychological economy is satisfied to a different degree depending on their 

success in acquiring need-satisfying tokens.  Those whose needs are well taken 

care of are more satisfied than those whose needs are relatively unfulfilled.  A 

perfectly satisfied person is one for whom all needs, from survival to freedom, are 

sufficiently fulfilled. 

Happiness is the rate of change in satisfaction that an individual 

experiences.  An individual is happiest when satisfaction is increasing at a rapid 

pace.  Likewise, unhappiness results from a decrease in satisfaction.  Being fired 

from a job, for example, causes a great deal of unhappiness due to the resulting 
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loss of a major source of survival, security, legitimacy, approval, confidence, and 

freedom tokens. 

 

Value 

 

Value is defined in terms of need satisfaction.  In the psychological model, 

value is attributed to any event, or anybody from which we gain positive tokens as 

well as the tokens themselves.  Negative value is attributed to any event, or 

anybody that yields negative tokens as well as the tokens themselves.  Simply put, 

we value whatever increases our satisfaction. 

The value of any given token depends on the amount of positive or 

negative satisfaction that it provides.  As we have seen, the value of a specific 

token is different to every person, since every person, although they have the 

same “default” needs, has those needs satisfied at a different level and sensitivity 

at a given time.  The value of a token can therefore only be thought of in terms of 

“value to” some particular individual. 
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III. ΩΩΩΩ  AND HAPPINESS 

 

In the previous two sections we presented two different models of value.  

To summarize: 

 

Information-theoretic model 

 

Value is attributed to that which increases the complexity-and-

organization (Ω) of the system in question. 

 

Psychological model 

 

People ascribe value to that which increases their satisfaction. 

 

It would seem at first glance that these two models of value have little in 

common, and are perhaps in opposition with one another.  Where the information-

theoretic model is domain-general and mathematically precise, the psychological 

model is human-centric and imprecise.  However, it is the goal of this thesis to 

provide some evidence that the two models are actually two different lenses on 

the same phenomenon.  We will argue that the information-theoretic model 

underlies the psychological model – that the empirical reality of the psychological 

model is a direct result of the operation of the principles described by the first 

model.   
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Note that the two models share an important parallelism: in both models 

value is determined in relation to a particular subject, and value is always 

associated with an increase, or change of state, rather than a state.  In the first 

model, the subject may be any system, whereas in the psychological model the 

subject is always a particular or “average” human being.  While in the 

information-theoretic model complexity-and-organization is the increasing 

quantity, in the psychological model it is the satisfaction of an individual. 

We suggest that the innate human desire to increase satisfaction is 

tantamount to an innate desire to increase complexity-and-organization, a desire 

that is evolutionarily beneficial to the individual, and ultimately, to the society at-

large.  As humans and by extension perhaps all organisms increase their 

satisfaction, in so doing they increase the complexity-and-organization of their 

behavior.  This complex-and-organized behavior of individuals is reflected in the 

structure of the society at large and their surrounding environment, so that we find 

increasing Ω in anything that they are in contact with. 

The evolutionary account goes something like this.  The human 

experience of satisfaction (biologically realized through endorphin production) 

has evolved for the purpose of rewarding life-sustaining behavior.  Our 

complexity as organisms reflects the complexity of the environment in which we 

must survive.  The fulfillment of our simple needs for survival (food, water, sleep, 

protection, sex) requires highly complex-and-organized social behavior in a world 

with scarce resources and competitive organisms, and has thus led to needs that 

are only indirectly related to survival.  Climbing the stratigraphy of needs is, then, 
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the process of increasing behavioral complexity-and-organization (Ω).  It is in this 

climbing that we find happiness, and it is this increase in complexity-and-

organization that we value. 

We cannot hope to prove this ambitious hypothesis here.  Rather, at best, 

we hope to provide evidence that warrants its further investigation.  In the 

following chapter we describe a computer simulation designed to test the above 

hypothesis.  Through experiments conducted with the simulation software, we 

hope to shed light on the relationship − if a relationship indeed exists − between 

complexity-and-organization and satisfaction, at least conceptually.
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Chapter 3: The TokenTrade Simulation 

 

In this chapter we present TokenTrade, a computer simulation based on 

the psychological-economic model of value presented in the previous chapter.  

TokenTrade models the exchange of tokens between independent agents in a 

psychological economy, and allows the experimenter to adjust various global and 

individual parameters in order to test their effect on population dynamics. 

The first section of this chapter describes the TokenTrade simulation in 

detail.  Section two presents the simulation from a user’s point of view, with 

interface details and instructions for using the program.  These first two sections 

provides sufficient information for the researcher who wants to run experiments 

with the program as is.  The final section provides technical notes that may be 

relevant to those interested in extending this work or incorporating it in their own 

research. 

 

THE TOKENTRADE SIMULATION -- DESCRIPTION 

 

TokenTrade is a simulation of a psychological economy.  In this economy, 

individual agents have needs that are fulfilled by tokens.  To fulfill their needs, 

agents trade tokens with one another.  Parameters such as neighborhood radius, 

maximum trade size, maximum initial endowment, fairness of trade and 
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dissipation/production rate, control the behavior of individual agents.  For 

example, some agents are token producers, while other agents are token 

consumers.  Some agents are restricted to perfectly fair trades, while other agents 

are allowed to make quite unfair trades, and so forth.  The dynamics of the 

population as a whole depend entirely on the parameter settings of individual 

agents. 

 The simulation takes place on a two-dimensional grid, where each 

grid cell represents an agent in the economy.4  Cells visibly shrink and grow 

depending on their satisfaction level, and change color depending on their 

happiness.  Happy cells are red; sad cells are blue.  A comprehensive look at the 

interface will be presented later.  For now, this brief visual description is enough 

to keep in mind as we look at the workings of the simulation. 

 

Needs and Tokens 

 

Agents trade tokens that fulfill needs.  Each individual has three needs5: 

 

Confidence/Freedom 

Legitimacy/Approval 

Survival/Security 

 

                                                 
4 Henceforth, the words “agent” and “cell” will be used interchangeably. 
5 Note that the six needs from Benedikt’s stratigraphy of needs have been reduced to three for the 
purposes of simplification.  This should not significantly affect the behavior of the simulation. 
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Likewise, there are three types of tokens, one corresponding to each need.  

We will refer to them as x, y, and z tokens, where x tokens correspond to 

survival/security, y to legitimacy/approval, and z to confidence/freedom.  Each 

cell is initially endowed with a random number of x, y, and z tokens, within a 

certain maximum set by the user.  Tokens are represented by real numbers greater 

than zero, so that 

 

x,y,z ≥ 0 

 

Satisfaction 

 

A cell’s total satisfaction depends upon the fulfillment of its needs.  The 

lower, more basic needs dominate the higher needs, so the lower needs must be 

attended to first.  For example, confidence/freedom (z) tokens are worthless to a 

cell if its need for survival/security (x) is not being met.  Furthermore, the 

accumulation of tokens yields diminishing returns.  Thus, the impact of x (or y, or 

z) tokens on a cell’s satisfaction diminishes as the cell accumulates more and 

more x (or y, or z) tokens.  This is modeled by the following equation for cell 

satisfaction: 
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 a = x/(1+x), 

 b = y/(1+y), 

 c = z/(1+z), 

where 0 ≤ a,b,c ≤ 1 

  

 0 ≤ S = a(1 + b(1 + c)) ≤ 3    (3.1) 

 

Happiness 

 

A cell’s happiness, H, is simply the change in satisfaction that occurs after 

a round of trading.  Increases in satisfaction produce happiness, decreases in 

satisfaction produce unhappiness (sadness).  The equation for happiness is simply 

 

 -3 ≤ H = Safter – Sbefore ≤ 3    (3.2) 

 

Trade 

 

In order to fulfill their needs (and thereby increase their satisfaction), cells 

trade tokens with each other.  Tokens are traded in a barter-style economy.  In a 

single round of trading, each cell is given an opportunity to trade.  Trading 

proceeds as follows: 

 
A cell is chosen from the trading pool at random.  At the beginning of a 

round, the pool contains all the cells in the universe. 
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The cell negotiates a possible trade with each of its neighbors. 
 
Negotiation of a trade 
A potential trade consists of two offers, one offer made by the cell to 
its neighbor, and one offer made by the neighbor to the cell.  The 
amount of tokens x,y, and z a cell can give away is constrained by the 
cell’s maximum trade size, which we will call W.  A possible trade is 
computed by generating a random offer for both the cell and the 
neighbor it is “negotiating” with: 
 
Cell makes random offer [x,y,z], where 0 < x,y,z < Wcell 
Neighbor makes random offer [x,y,z], where 0 < x,y,z < Wneighbor 
 
Of these possible trades, the trade that results in the greatest value is 
executed and the cell and its trading partner are removed from the 
trading pool.   

OR 
 
If there is no trade that results in an increase in happiness, the cell (but 
none of its neighbors) is removed from the trading pool. 
 
Value of a trade 
The value of a trade is simply the combined happiness that would 
result from the trade, subject to a fairness test.  The degree to which a 
trade must be fair is controlled by a fairness parameter, f.  The value of 
a trade is computed by the following equation: 
 
V = Hcell + Hneighbor – f | Hcell – Hneighbor |,   (3.3) 
 
where 0 ≤ f ≤ 1. 
 

Steps 1-3 repeat until the trading pool is empty.  The display is updated, 
and a new round of trading begins. 
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Neighborhood Size 

 

A cell may only trade with those cells that are in its neighborhood.  The 

size of a cell’s neighborhood is governed by its neighborhood radius, r, where  

0 ≤ r ≤ 4.  A neighborhood radius of 1 means that a cell can trade with all of its 

surrounding eight neighbors.  A radius of 2 means that a cell can trade with all 

eight immediate neighbors, plus the next sixteen surrounding neighbors, for a 

total of 24.  Also note that the universe “wraps-around” at the edges, so that the 

north and south, east and west edges of the universe are connected.6  Thus, a cell 

that is located on the western edge with r = 1 can trade with (three) cells located 

on the eastern edge of the universe. 

 

Production/Consumption 

 

Some cells “habitually” and continually produce tokens, while other cells 

habitually and continually consume them.  This is controlled by a cell’s 

dissipation/production rate, p.  The dissipation/production rate governs the 

amount of tokens a cell produces or consumes per round.  When p is positive, the 

cell produces tokens, when p is negative, the cell consumes tokens. 

                                                 
6 Since the edges of the grid are “sewn” together, the universe would be more accurately 
represented as the surface of a torus.   
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THE TOKENTRADE SIMULATION – USER INTERFACE 

 

 

Figure 3.1: The main screen of the TokenTrade simulation 
(http://www.ar.utexas.edu/cadlab/turknett/tokentrade.html). 

Upon loading the simulation on a Java 1.1 compliant web browser, the 

user is presented with the main screen of the program.  The main screen consists 

of a square grid of cells, with a menu at the bottom.  The menu contains seven 

buttons, each with a separate function, described below. 

 

Load:  Loads a population of cells.  This only works if browser security settings 

are turned off.  
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Save:  Saves a population of cells.  This feature only works if browser security 

settings are turned off. 

 

Go/Stop:  Starts and stops the simulation 

 

Step:  Updates the universe, one step at a time.  Each time the button is pressed, 

one round of trading occurs. 

 

Display:  Cycles between three different display modes. 

 

Display Modes 

Smiles indicate happiness, frowns indicate unhappiness.  The fatness of 

the face represents satisfaction. 

Red indicates happiness, blue indicates unhappiness.  White indicates little 

change in satisfaction, or near-zero happiness.  The size of a 

cell represents satisfaction.  The brighter the color, the greater 

the change in satisfaction. 

Same as display 2, with black indicating near-zero happiness. 

 

Edit Cells: Allows the user to edit the parameter settings of selected cells.  A 

group of cells must be selected with the mouse before pressing this button.  There 

are five parameters that may be adusted. 
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Figure 3.2: The “Edit Cells” window. 

Cell Parameters 

 

Neighborhood Radius (r).  The radius of a cell’s neighborhood.  A cell’s 

neighborhood consists of all the cells with which the cell can trade. 0 ≤ r ≤ 4 

Max Trade Size (W).  The maximum number of tokens from each category x,y, 

and z that a cell can give away in a single trade. 0.0 ≤ W ≤ 50.0 

Max Endowment ([x,y,z]).  The maximum number of tokens E from each category 

x,y, and z that with which a cell can be initially endowed.  Endowment is 

randomly determined, so this sets an upper limit. 0.0 ≤ [x,y,z] ≤ 50.0 

Fairness (f).  The degree to which trades initiated by a cell must be fair.  A fair 

trade is one that results in the same amount of happiness for both cells.  A 

trade that makes one cell happy while making another cell less happy is 

unfair.  Note that a cell’s fairness applies only to those trades it initiates.  A 
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cell with a fairness of 1.0 may still make an unfair trade with another cell, if 

the other cell is the one initiating the trade. 0.0 ≤ f ≤ 1.0 

Dissipation/Production Rate (p).  The rate at which a cell consumes or produces 

tokens.  Negative numbers are dissipation rates; positive numbers are 

production rates.  A cell’s tokens are decreased or increased by this 

percentage each round.  When set to zero, the cell neither produces nor 

consumes tokens.  Note that if a cell runs out of tokens, it can no longer 

produce tokens. –0.1 ≤ p ≤ 0.1 

 

Stat:  Brings up a window showing the statistics of the current run.  Three 

statistics with corresponding graphs are shown in the window.  This window 

updates every ten cycles.  The “Save Statistics” button at the bottom of the 

window allows the user to save the statistics of the current run to an ASCII text 

file.  However, this feature only works if the browser allows applets to write data 

to the client machine.  The author has been able to accomplish this in Microsoft 

Internet Explorer by changing the browser’s security settings for Java applets. 
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Figure 3.3: The “Universe Statistics” window. 

 

Universe Statistics 

 

Average Satisfaction (S).  The average satisfaction of all the cells in the universe. 

Average Happiness (H).  The average happiness of all the cells in the universe. 
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Complexity-and-organization (Ω).  This measures the complexity-and-

organization of the distribution of cell satisfaction values across the whole 

universe.  This is discussed in depth in chapter three. 

 

Size:  Changes the size of the universe.  Size represents the number of cells across 

one dimension.  Thus, a size of 10 represents a 10 x 10 universe.  Note that larger 

universe sizes slow down the simulation, and require more memory to run. 

 

Help:  Displays information on how to use the program. 

 

Selecting Cells 

In order to change cell parameters, a cell or group of cells must be selected 

with the mouse.  This is done in the usual way, by clicking on individual cells, 

and click-dragging to select a group of cells.  Shift-selecting and Ctrl-selecting 

cells is also supported. 
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Figure 3.4: The “Cell Statistics” window. 

 

Cell Statistics Window 

Double-clicking on an individual cell brings up a “Cell Statistics” 

window.  This window shows the current state of the cell, including cell 

parameters as well as current token, satisfaction, and happiness values.  

Satisfaction and happiness are shown on two separate graphs.  This window is 

updated with each round. 
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THE TOKENTRADE SIMULATION – TECHNICAL NOTES 

 

The TokenTrade simulation is written in Java version 1.1, an object-

oriented programming language designed by Sun Microsystems, Inc.  Java was 

chosen over C++ primarily because it offers platform independence, so that the 

simulation would run on a variety of operating systems, including Unix, 

Windows, and MacOS.  Also, Java support is built into the two most popular Web 

browsers, Netscape Navigator and Microsoft Internet Explorer, which allows 

users to run the simulation remotely over the Internet by simply visiting the 

TokenTrade simulation web site 

(http://www.ar.utexas.edu/cadlab/turknett/tokentrade.html). 

The drawbacks to using Java for this project were mostly due to its 

relative youth in the market.  The most often cited criticism of Java is its 

sluggishness in comparison to C++, a point which is quite relevant here, since 

simulation programs are highly processor intensive.  However, in the year since 

this project began, the speed at which the TokenTrade simulation runs has 

increased tenfold due to vast improvements in Java virtual machine (VM) 

implementation and Just-In-Time (JIT) compiler technology.7   

Other problems encountered include poor and inconsistent VM support by 

various browsers, poor language support for graphical user-interface, and security 

restrictions for Java applets that prevent file input and output.  Netscape’s Java 

                                                 
7 Based on qualitative observations using Microsoft Internet Explorer in Windows 95. 
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implementation still lags far behind Microsoft’s in terms of speed and 1.1 feature 

support, and both browsers have been slow to adopt the new Java 1.1 standard.  

Furthermore, the same program will often behave differently depending on which 

browser is used, indicating that either the standard is not being adhered to, or that 

the standard is incomplete.   

Graphical user-interface support in the current (1.1) version of Java is 

difficult to use and lacking in some basic functionality.  For instance, simple 

slider widgets are not implemented in 1.1, and had to be programmed from 

scratch.  Because of this lack of functionality, it was difficult to create a 

consistent, professional look-and-feel for the TokenTrade application. 

Finally, security restrictions on Java applets prevent reading and writing 

files to the client machine, which hampers the usability of the simulation for 

serious experimentation because it is impossible to save the results of a trial run of 

the simulation.  Using Internet Explorer, it is possible to get around these security 

restrictions by customizing the Java security settings.   

The simulation could have been written as a standalone Java application 

instead of an applet, which would resolve the file I/O issue since applications do 

not have similar security restrictions.  However we felt that the advantages of 

being able to access the simulation through a web browser outweighed these 

concerns.  An applet will run on any machine with the latest version of Netscape 

Navigator or Internet Explorer, and only requires that the user go to the web page 

where the applet is located.  An application, on the other hand, must first be 

downloaded by the user and then executed on the local machine.  The user must 
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have operating system support for Java 1.1 on his or her computer or the 

application will not execute.  At the time of this writing, it is not possible to 

assume that this is the case for most users.  Also, operating system support for 

Java seems to lag behind browser support, at least for the Windows platform.  The 

end result of releasing the program as an application instead of an applet would be 

that fewer people would be able to use the program.  However, it would not be 

difficult and would probably be worthwhile to create a corresponding application 

version with additional open and save features. 

The good news is that Java seems to be improving rapidly on all of these 

fronts.  As mentioned previously, the speed of Java virtual machines has greatly 

improved over the past year.  Virtual machine manufacturers claim that their next 

releases will allow Java applications (and applets) to run at speeds nearly 

equivalent to native C applications, and native Java compilers will soon be 

available. The next version of Java (JDK 1.2) contains a replacement for the 

AWT, called Swing, which enables the creation of interfaces that are more 

integrated with the look-and-feel of other applications on the user’s windowing 

environment, whatever that environment may be (Win95, MacOS, SunOS, etc). 

 

Design decisions 

 

The Java source code for the TokenTrade simulation is online at 

http://www.ar.utexas.edu/cadlab/turknett/tokentrade.html.  The following section 
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describes some of the reasoning behind several design decisions, and it may be 

helpful to those interested in understanding and/or modifying the original code. 

 

Floating-point numbers and cell state 

 

One of the defining characteristics of cellular automata (CA) is the notion 

of finite cell states.  Each cell may be in one of several possible states.  Often, 

cells have only two possible states, “on” and “off.”  Taking all cell states together, 

the unique state of the CA at any moment in time may be determined.  This 

allows for a straightforward mathematization of cellular automata systems, and is 

a major reason for their continued use as models of various real-world 

phenomena. 

In TokenTrade, a cell’s state is represented by five variables.  The first 

three variables represent the cell’s current stock of x,y, and z tokens.  The 

remaining two variables represent the cell’s satisfaction and the cell’s happiness, 

respectively.  Satisfaction and happiness of a cell are both computed directly from 

the token inventory [x,y,z], so the token inventory is sufficient to determine the 

state of a cell. 

Double floating-point numbers are used to represent tokens, satisfaction, 

and happiness.  Floating-point numbers were used because the satisfaction 

function produces a real-valued result, and because floating-point numbers allow 

for greater variation and more realism in the simulation.  However, the use of 

floating-point numbers throws into question the idea of finite state.  
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Floating-point numbers are intended to represent real numbered values, 

and real numbers are inherently non-finite.  However, real numbers are theoretical 

entities, and their implementation on computers requires them to be represented as 

finite length byte arrays.  Thus, cells are indeed finite state automata, but the 

number of states that each cell may occupy is many orders of magnitude larger 

than the number of states in typical cellular automata applications.  In Java, 

double floating-point numbers consist of 64 bits, giving each cell 5 x 264 potential 

states.8 

 

Parallel vs. sequential updating 

  

As explained above, the universe updates in rounds, meaning that each 

cell in the population must make a trade (or elect to pass) before the next round of 

trading can begin.  This is intended to simulate simultaneous trading (many 

individuals trading at the same time).  Because parallel computation is not 

possible with most computers, this method is commonly employed.  Synchronous 

update is standard for cellular-automata, and is common in genetic algorithms and 

other agent-based simulations as well.  An alternative to updating in rounds is 

randomly updating individual cells in the population (i.e., allow one cell to trade, 

then update its state and the state of its neighbor).  One may also choose whether 

to require all cells to trade before a cell that has already traded may trade again.  It 

                                                 
8 Actually, since satisfaction, S, is a dependent variable of [x,y,z], it is redundant information and 
should not be included in cell state.  This is not the case with happiness, H,since it is a measure of 
change from the previous state.  Thus, there are actually 4 x 264 potential cell states. 
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seems likely that either of these options would have little effect on the behavior of 

the simulation, as long as trading cells are chosen randomly.  In their Sugarscape 

simulation, Axtell and Epstein [1996] found no measurable difference between 

updating randomly and updating in parallel. 

 

Wrap-around universe 

 

The edges of the universe are connected in the simulation, forming a torus 

shape if the universe were displayed in three dimensions.  This allows cells lying 

on the edge of the universe to trade with cells on the opposite edge.  This is in 

keeping with the convention in cellular-automata literature.  It would be very easy 

to modify the program so that the universe does not wrap-around, but it is 

unknown what affect this would have. 
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Chapter 4:  Experiments and Results 

In this chapter we present the results of several experiments performed 

with TokenTrade.  These experiments provide evidence that there is a correlation 

between the mean happiness of a population of agents and the complexity-and-

organization of the average satisfaction distribution of the population over time, 

as measured by ΩS.  We explore the nature of this correlation, and investigate 

how altering individual cell parameters affects the behavior of ΩS with respect to 

satisfaction and happiness. 

 

MEASURING COMPLEXITY-AND-ORGANIZATION IN TOKENTRADE 

 

Ideally, we would like to devise a way to measure the complexity-and-

organization of individual agent behavior over time.  Thus far, no adequate 

measure has been developed and tested, so here we use a simpler method that 

measures the overall state of the entire population at a single point in time.  We 

define a measure ΩS , which represents the complexity-and-organization of the 

frequency distribution of satisfaction values at a given moment in time.  Any one 

cell (agent) chosen at random thus has a probability of being in a certain S state 

that depends on this distribution over the population.  Cpot is log2N, where N is the 

number of possible satisfaction values.  Since the range of satisfaction values, 0 < 

S < 3, is continuous, we divide the range up evenly into 30 discrete sub-ranges, so 
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that any given satisfaction value lies within a certain sub-range.  Using this 

method of discretizing the range of satisfaction values, we calculate  

Cpot = log230 =  4.91 bits.  To compute C, we determine, for each sub-range, the 

proportion 0 ≤ p(subrange) ≤ 1 of cells whose S is in that sub-range.  This 

frequency distribution gives us the set of probabilities that the S of a randomly 

chosen cell in the population lies within particular sub-ranges.  We then compute 

C according to equation 2.4, �
=

−=
N

i

ipipC
1

)(log)( .  ΩS is then determined 

according to equation 2.8b. 

ΩS is essentially a measure of wealth stratification, where wealth is 

figured in terms of satisfaction.  ΩS will be highest when there are a number of 

“classes” of similar wealth, but not too many.  If the population becomes too 

stratified, say, with one rich member and a throng of poor ones, ΩS will be low, 

since organization is too high.  Likewise, ΩS will be low if everyone is rich or 

poor.  On the other extreme, in a population where each member has a different 

degree of satisfaction, ΩS will be low because complexity is too high. 

One might argue here that using S in the computation of both ΩS and 

average satisfaction ensures that there will be a correlation between the two, and 

that if a correlation is indeed discovered, we will only have proven what we have 

already implicitly assumed.  However, a correlation between ΩS and average 

satisfaction is by no means assured. ΩS is a distributional measure of S and can 

vary almost independently of average satisfaction.  When Savg = Smax or  
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Savg = Smin, ΩS = 0 because all the cells must be in the same state for either 

extreme to happen.  But when Savg is “middling,” the value of ΩS may vary 

greatly. 

EXPERIMENT 1 – A POPULATION OF NON-TRADING PRODUCERS 

 

In the first experiment, we examine a baseline case in order to get an idea 

of how the simulation behaves with a uniform population when no trade is 

allowed.  This will give us a better idea, when we do allow trading, of just what 

effect trade has on the behavior of the simulation.  Each agent in the population of 

100 cells is given the following attributes: 

 
Radius = 1 
Trade Size = 0.0 
Endowment = 0.05 
Fairness = 1.0 
Production Rate = 0.05 

 

Each agent begins with a small random endowment of tokens and 

produces additional tokens slowly.  Since the trade size is zero, no trading occurs.  

An endowment of 0.05 means that each agent initially receives between 0.0 and 

0.05 x,y, and z tokens, determined by a pseudo random-number generator.  This 

results in an average initial satisfaction of around 0.02.  Figure 4.1a shows 

average satisfaction in a sample run of this initial setup.  The agents gain 

satisfaction as they produce tokens, accelerating upward to around 1.5.  After this 

point, in round 11, the agents experience diminishing marginal returns from the 
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production of additional tokens, and each subsequent increase in satisfaction is 

smaller than the previous one.  Average satisfaction eventually reaches a plateau 

as it approaches Smax = 3.0.  In Figure 4.1b we see that average happiness, Havg, 

which is simply the first derivative or slope of Savg, climbs initially until 

diminishing returns set in at round 11, where it peaks and then falls slowly to zero 

as the satisfaction curve levels out.9 

 

                                                 
9 It is important to note that when we speak of a “round” here, we are actually referring to the 
moment when the universe statistics Savg, Havg, and ΩS are updated, which happens after every ten 
rounds of trading.  If we were to graph one data point for every round of trading, the results would 
look much the same, although small local variations might turn up that are smoothed out in the 
current graphs. 
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Figure 4.1a, b and c: Average satisfaction, average happiness, and ΩS over time 
for a population of non-trading producers. 

Figure 4.1c shows the behavior of ΩS over time. Starting from zero, ΩS 

climbs upward and decelerates to a peak just under 3.5, dips slightly, peaks 

around 3.5 again, and then descends back to zero.  We find two maxima, one at 

round 8 and the other in round 15, with a local minimum at round 11.  The curve 
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is almost bilaterally symmetrical, like Havg, with a midpoint at the local minimum 

in round 11.  The shape of the curve seems to suggest a limit around 3.5, 

corresponding with the two maxima.  Indeed, there is a limit here, corresponding 

with Ωmax. Using equation 1.11, we find Ωmax = Cpot /√2 = log230/√2 = 3.47.  

Thus, at both maxima, ΩS is optimal. 

The behavior of ΩS makes sense if we look at R and C.10 In the beginning, 

RS is very high because all agents have near zero satisfaction.  As agents produce 

tokens, they gain satisfaction at different rates, since each cell begins with a 

slightly different endowment, and amount of tokens produced is a percentage of 

current tokens.  Thus, initial differences in satisfaction values between agents are 

amplified and satisfaction values become more widely distributed across the range 

of possible values, causing a decrease in RS and an increase in CS.  ΩS is optimal 

when RS ≈ CS in round 8.  When average satisfaction reaches the midpoint at 1.5 

(round 11), happiness is greatest, and CS is maximized. The local minimum at 

round 11 in the graph of ΩS corresponds exactly with the peak, Hmax , in the graph 

of Havg.  After this point, CS begins to decline and RS increases again.  In round 

15, RS ≈ CS again and ΩS is maximized once more before declining to zero as RS 

takes over. 

There is clearly a direct correlation in this case between CS and Havg.  As 

Havg increases, there is greater variation of satisfaction values across the 

population, and therefore CS increases as well.  Furthermore, an analysis of the 

change in Havg over time shown in figure 4.1d reveals a connection between the 

                                                 
10 Unfortunately, we do not have a graph of R and C over time because the program does not 
currently output this data. 
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extrema in figure 4.1c and the inflection points in figure 4.1b.  The maximum, 

minimum, and zero crossings in figure 4.1d correspond to inflection points in 

figure 4.1c.  From this graph we see that the inflection points in round 8 and 

round 15 correspond to the maxima in figure 4.1b.  Likewise, the zero crossing in 

round 15 corresponds to the local minimum in figure 4.1b.  Finally, we notice that 

whenever Havg is accelerating − upward in rounds 3-9 and downward in rounds 

12-15 − ΩS increases, and whenever Havg is decelerating, ΩS decreases. 

 

Figure 4.1d: Change in happiness over time for a population of non-trading 
producers. 

Reproducing this experiment with the same cell parameters yields nearly 

identical results time after time, with only slight differences due to the 

randomness of the initial endowment.  
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EXPERIMENT 2 – A POPULATION OF NON-TRADING CONSUMERS 

 

In this experiment, we reverse the previous experiment by starting with a 

population of highly satisfied agents that slowly consume tokens until they have 

none left.  Each agent in the population begins with the following attributes (again 

population size is 100 agents): 

 
Radius = 1  
Trade Size = 0.0 
Endowment = 1000.0 
Fairness = 1.0 
Production Rate = -0.05 

 

The picture here is nearly the exact inverse of experiment 1.  Graphs of 

average satisfaction, average happiness, and ΩS are shown in figures 4.2a-4.2c. 

Figure 4.2d shows the change in Havg over time. 
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Figure 4.2a, 4.2b, and 4.2c: Average satisfaction, average happiness, and ΩS 
over time for a population of non-trading 
consumers. 
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Figure 4.2d: Change in happiness over time for a population of non-trading 
consumers. 

Once again we find that the inflection points in the graph of average 

happiness correspond with the extrema in the graph of ΩS, and that increases in 

ΩS occur in those rounds where the value of Havg is accelerating, upward or 

downward.  Both maxima in the graph of ΩS are optimal at ΩS ≈ Ωmax.  However, 

in this experiment the relationship between Havg and CS is inverted.  As CS 

reaches its peak, Havg is at its lowest point.  This suggests that CS is not directly 

proportional to Havg, but is instead directly proportional to the absolute value of 

Havg.  It is the magnitude of change in Havg, not the direction that is important 

here. 
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EXPERIMENT 3 – A POPULATION OF TRADING AGENTS 

 

So far we have explored two baseline cases in which trading is not 

allowed.  Now we will see what effect trade has on the behavior of a population 

of agents.  100 agents are created uniformly as follows: 

 
Radius = 1  
Trade Size = 0.5 
Endowment = 7.0 
Fairness = 0.5 
Production Rate = 0.0 

 

In this experiment, agents neither “produce” nor “consume” tokens:  we 

set production/dissipation rate to zero in order to isolate the trading effect.  

Endowment is set to 7.0, so that average satisfaction begins around 1.5.  This 

ensures a fairly wide distribution of satisfaction values across the population of 

agents, so that there is room, as it were, for trades to happen.  Fairness is set at 0.5 

to allow some “unfair” trading to occur.11 

                                                 
11 Experiments have shown that when fairness is set at 1.0, very little if any trading occurs.  I shall 
not stop to examine the more obvious social implications of this fact beyond saying that overly-
strict short-term fairness stifles exchange. 
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Figures 4.3a-4.3c: Average satisfaction, average happiness, and ΩS over time 
for a population of trading agents. 

The results of this experiment are shown in figures 4.3a-4.3c.  The effect 

of trading is quite pronounced. In the first few rounds, happiness is high as poorly 

endowed agents receive tokens from other agents who have extra tokens and are 

experiencing diminishing marginal returns.  The population quickly equilibrates, 

so that by round 8 all agents have nearly equivalent S ≈ Savg = 1.91.  After this 

point very few trades occur, and Havg ≈ 0.  When the population is at equilibrium, 

tokens are distributed across the population so that total satisfaction is maximized.  

Figure 4.3d and 4.3e show the population before and after equilibrium has been 

reached. 
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Figure 4.3d: Screenshot of the population in round 1 of experiment 3. 

Figure 4.3e: Screenshot of the population in round 20 of experiment 3. 
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Since the result of trading is to equalize satisfaction values across the 

population, organization, R, increases with each round. Looking at figure 4.3c, we 

see that in the first round, where CS > RS, this increase in organization (and 

decrease in complexity) causes ΩS to climb, until round 2 where CS ≈ RS and ΩS ≈ 

Ωmax = 3.46.  After this point, RS > CS and ΩS falls to zero. Havg is highest in 

round 2, which is the first round in which Havg can be calculated since computing 

Havg requires two Savg values.  Once again, this corresponds with the highest value 

of CS (not counting round 1 since there is no Havg value to compare).  Without a 

graph of CS, it is impossible to make the case for a directly proportional 

relationship between Havg and CS here, however such a relationship may indeed 

exist and should be explored in future work. 
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Chapter 5:  Conclusions and Future Work 

The experiments described in the previous chapter suggest that a direct 

correlation exists between the complexity of the frequency distribution of 

satisfaction values across a population of token trading agents and their average 

happiness over time. In all three experiments, CS is greatest when satisfaction is 

changing the most, without regard to direction of change.  This is not surprising, 

since CS is simply a measure of the amount of variation in the S distribution, and 

S fluctuates the most when the magnitude of Havg is large. Furthermore, our 

results show that when Havg is accelerating, either upward or downward, ΩS 

increases.  Finally, we find that trade causes R and S to increase, moving the 

population toward an equilibrium state in which R = Rmax, C = 0, ΩS = 0, H = 0 

and S approaches a limit value. 

 While these experiments do establish a link between complexity 

and satisfaction, we feel that further experiments should focus on the complexity 

of agent behavior rather than the complexity of the satisfaction distribution.  

Future work should focus on one of three hypotheses, which we propose below.  

This will require a number of changes to the TokenTrade simulation, depending 

on which hypothesis we are trying to support. 
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HYPOTHESES 1 & 2 

 

The first two hypotheses are opposite sides of the same coin.  We 

hypothesize 

 
that more complex-and-organized trading behavior always results in greater 

happiness,  
 
and conversely, 
 
that greater happiness is always the result of more complex-and-organized 

trading behavior.   
 

In order to run experiments with the TokenTrade simulation that will test 

these hypotheses, two things are necessary.  First, a method of measuring the 

complexity-and-organization of agent behavior, and second, a collection of 

progressively “smarter” agents whose behavior is increasingly complex-and-

organized.  Then a series of experiments could be run to test if happier agents 

always exhibit greater “behavioral Ω” than their less happy counterparts, and, if 

all agents that exhibit complex-and-organized trading behavior are happier than 

their less complex-and-organized counterparts. 

A simple method to measure complexity-and-organization of agent 

behavior would require keeping track of how often an agent trades with each of its 

surrounding neighbors.  This would give a frequency distribution from which Ω 

could be calculated.  For an agent with eight neighbors, we would compute C as 

follows: 
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....where p(i) is the frequency of trade with neighbor i, and p(0) is the frequency 

that the agent makes no trade at all. 

Although this method would provide a good first approximation of 

behavioral complexity, it does not capture certain other information such as the 

amount and type of tokens traded.  It also ignores temporal organization 

(sequential patterns) that may arise in an agent’s trading behavior. 

Once a method for determining behavioral complexity is established, 

agents must be created that exhibit increasingly complex-and-organized trading 

behavior.  Currently, agent behavior is influenced by initial endowment, 

production rate, neighborhood size, maximum trade size and fairness.  It may be 

possible, with only these parameters, to generate an array of different types of 

cells that exhibit sufficient variation in their trading behavior.  However, 

experience with the TokenTrade simulation indicates that trading behavior is 

typically either extremely random or extremely ordered, and far from optimal Ω.  

Additional parameters governing trading behavior such as learning, memory, and 

“geographic” mobility would certainly allow more complex-and-organized 

behaviors to emerge. 
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Several sophistications that would increase the realism of the simulation 

and might increase the complexity-and-organization of agent behavior have been 

devised but not yet implemented.  These sophistications are listed below: 

 

Cost/benefit parameter(k). The cost/benefit parameter determines the 

degree to which giving tokens away costs or benefits the agent who is giving 

them.  This could be individualized so that agent i has a different value kj for each 

neighbor j = 1,2,3,...,N. 

We compute the effect that giving away tokens has on satisfaction as 

follows: 

 

a = [kj ∆x]/[1+ kj ∆x], 

b = [kj ∆y]/[1+ kj ∆y], 

c = [kj ∆z]/[1+ kj ∆z], 

where {∆x, ∆y, ∆z} represents a token vector given to agent i by 

agent j, and where -1 ≤ kj ≤ 1 

 

H = ∆S = a(1 + b(1 + c)) 

 

Implementing this change would require multiplying the my_offer 

vector by a parameter kj before adding it to the tokens vector in both the 

computeValue and exchangeTokens methods. 
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Credence parameter(r).  The credence parameter determines the 

effectiveness of tokens received from other agents. This could be individualized 

so that agent i has a different value rj for each neighbor j = 1,2,3,...,N. 

We compute the effect that receiving tokens has on satisfaction as follows: 

 

a = [rj ∆x]/[1+ rj ∆x], 

b = [rj ∆y]/[1+ rj ∆y], 

c = [rj ∆z]/[1+ rj ∆z], 

where {∆x, ∆y, ∆z} represents a token vector received from agent j 

by agent i, and where -1 ≤ rj ≤ 1 

 

H = ∆S = a(1 + b(1 + c)) 

 

Implementing this change would require multiplying the 

neighbor_offer vector by a parameter rj before adding it to the tokens 

vector in both the computeValue and exchangeTokens methods. 

 

Enough parameter(E).  0.5 ≤ aE, bE, cE ≤ 1 is an agent’s contentment level 

of each component of the satisfaction vector [a,b,c], where a = x/(1+x), b = 

y/(1+y), and c = z/(1+z), yielding a contentment vector [aE, bE, cE].  When a > aE, 

b > bE, and c > cE, the cell “retires” and stops trading.  Implementing this change 

would require adding a check to see whether the retirement condition has been 

met in findBestTrade. 
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Value balance(L).  Li,j is the value balance that cell i has with each of its 

neighbors j = 1,2,3,...,N.  In other words, Li,j is the amount of happiness cell i 

owes cell j.  The limit value for Li,j is 2r.  After this limit is reached, Li,j cannot be 

raised higher if Li,j > 0.  Adding value balance to the computation of V, we have: 

 

V = Hcell - Lcell,neighbor +  Hneighbor – Lneighbor,cell  

- f | Hcell - Lcell,neighbor +  Hneighbor – Lneighbor,cell | 

 

HYPOTHESIS 3 

 

The third hypothesis states  

 
that the desire to increase happiness is the cause of complex-and-

organized behavior.   

 

The third hypothesis makes the evolutionary argument that in an 

environment of scarce resources, only those individuals that develop increasingly 

complex-and-organized behavior will be happy.  We imagine a sort of 

bootstrapping process in which individuals find themselves in an increasingly 

complex environment as their neighbors evolve increasingly clever strategies for 

obtaining tokens.  Individuals must adapt and refine their strategies in order to 

keep up, or else face the consequences.  Those that can’t keep up are removed 
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from the gene pool.  Over time, members of the population become highly adept 

at trading tokens, exhibiting increasingly complex-and-organized behavior.  

This, of course, is the story of evolution applied to token trading.  

Although the idea that evolution trends toward increasing complexity-and-

organization may seem self-evident, this is by no means an established scientific 

law.  The prevailing scientific opinion is that it does, but empirical studies that 

would confirm this hypothesis remain to be done [McShea 1996].  Part of the 

difficulty is the controversy surrounding the concept of complexity and the lack of 

agreement on a single, suitable mathematical definition. 

In order to test this third hypothesis, fundamental changes to the 

simulation would be required.  Primarily, agents must be endowed with some way 

of adapting their behavior in response to their environment in order to improve 

their ability to acquire tokens.  In essence, agents must evolve.  This increases the 

programming challenge significantly, since evolving agents would necessitate 

some type of unsupervised machine learning algorithm.  Furthermore, each agent 

would require its own independent “brain,” and with a population of 100 or so 

agents, the learning algorithm would need to be sufficiently fast.  Parallelizing the 

computations would be extremely beneficial as well. 

One possibility would be to use genetic programming to breed a 

population of computer programs that learn to trade with one another.  Genetic 

programming is a learning algorithm developed by Koza [1992] in which the 

evolutionary process is used to produce computer programs that perform a certain 

task.  An initial population of programs is generated randomly, and each program 
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is assigned a fitness score based on its success at solving the problem at hand.  

Successful programs survive and reproduce while unfit programs are replaced by 

the new offspring.  Reproduction occurs though the genetic crossover of two 

parent programs, which results in a new program that contains part of the program 

of each parent.  Over time, the population evolves and programs become 

increasingly adept at solving the specified task. 

In genetic programming, one specifies a set of primitive functions and 

terminals (inputs) that serve as the building blocks from which programs are 

assembled.  The function set typically includes operations such as sum, product, 

divide, greater-than, if, abs, sin, cos, memory, min, max, and so on.  Let us 

imagine a population of programs where the task is trading tokens.  For these 

purposes, we need to define two additional operations: give and take, both of 

which have two inputs, neighbor and amount.  The give function gives the 

specified amount of tokens to the specified neighbor, while the take function 

takes the specified amount of tokens from the specified neighbor.  Fitness scores 

would be determined by allowing the population of programs to run for a 

specified number of rounds, and then assigning each program a score based on its 

average happiness over time.  The most successful token traders are chosen for 

reproduction and the process is repeated for a large number of generations.  We 

would then compare the complexity-and-organization of successful and 

unsuccessful programs over the course of evolution to determine whether Ω 

increases along with happiness. 
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Although many details of this scheme remain to be worked out, we believe 

that such an experiment would provide invaluable insight into how complexity-

and-organization arises in a population over the course of evolution, and would 

help us better understand the nature of the connection between evolution and 

complexity. 

One final note.  It is important to realize that hypothesis one (that more 

complex-and-organized trading behavior always results in greater happiness) and 

hypothesis three (that the desire to increase happiness is the cause of complex-

and-organized behavior) are distinct, and that one does not necessarily follow 

from the other.  It is quite possible that that hypothesis three is true but hypothesis 

one is false.  Hypothesis one makes the strong claim that increased complexity-

and-organization always results in greater happiness.  This may not be true.  In 

fact, it may be the case that complex-and-organized trading behavior correlates 

just as strongly with unhappiness as it does with happiness, just as it did with our 

pilot experiments.  If hypothesis three were shown to be true in light of this, it 

would suggest that there is a world of complex-and-organized behaviors that 

simply never arise because they are not evolutionarily advantageous.  Thus, the 

only way that we can say that increasing complexity-and-organization is always 

good for us is if we show all three hypotheses to be true. 
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